EXTENDED MEAN FIELD GAMES: WHY ARE THEY SO DIFFERENT?

René Carmona

Department of Operations Research & Financial Engineering BCF Princeton University

> *Jimmy* 60 th! October 14, 2017

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

GAME THEORY

Long History (e.g. long list of Nobel Prizes in Economics)

Of relevance to this presentation:

Mathematical Theory

Notion of Equilibrium & Nash Equilibrium

Applications in Finance / Finance Engineering

- Auction Theory (IPOs, pricing of digital goods,)
- Predatory Trading
- Optimal Execution / Liquidation

Applications from Social Sciences & Regulation

- Large populations behavior (herding, congestion,)
- Games of Timing (Bank runs, Fund Redemption,)

Will Focus on Mean Field Games

Lasry-Lions, Caines-Huang-Malhamé, 2006

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

AGENT BASED MODELS AND MEAN FIELD GAMES

Agent Based Models

- Very popular for the analysis of large complex systems
- Behavior prescribed at the individual (microscopic) level
- Exogenously specified interactions
- Large scale simulations possible
- If symmetries in the system, interactions can be Mean Field

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Possible averaging effects for large populations
- Mean Field limits easier to simulate and study
- Net result: Macroscopic behavior of the system

MEAN FIELD GAMES VS AGENT BASED MODELS

Mean Field Games

- At the (microscopic) level individuals control their states
- Exogenously specified interaction rules
- Individuals are rational: they OPTIMIZE !!!!
- Search for equilibria: very difficult, NP hard in general
- If symmetries in the system, interactions can be Mean Field
 - Possible averaging effects for large populations
 - Mean Field limits easier to study
 - Macroscopic behavior of the system thru solutions of

Mean Field Games

Lasry-Lions (MFG) Caines-Huang-Malhamé (NCE)

Examples: flocking, schooling, herding, crowd behavior, percolation of information, price formation, hacker behavior and cyber security,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

TWO SIMPLE EXAMPLES

- Markets for Exhaustible Resources (e.g. crude oil) Guéant - Lasry - Lions and Chan-Sircar
- Price Impact of a Large Group of Traders
 R.C. Lacker (weak formulation) R.C. Aghbad (unpublished) R.C. Delarue (Vol. I of big book), later extended in Jaimungal Nourian & Cardaliaguet L Halle

(ロ) (同) (三) (三) (三) (○) (○)

PRICE IMPACT OF A GROUP OF N TRADERS

 X_t^i number of shares owned at time t, α_t^i rate of trading of *i*-th trader

$$dX_t^i = \alpha_t^i \, dt + \sigma^i dW_t^i$$

 K_t^i amount of **cash** held by trader *i* at time *t*

$$dK_t^i = -[\alpha_t^i S_t + c(\alpha_t^i)] dt,$$

where S_t price of one share, $\alpha \rightarrow c(\alpha) \ge 0$ cost for trading at rate α

Price impact formula:

$$dS_t = \frac{1}{N} \sum_{i=1}^{N} h(\alpha_t^i) dt + \sigma_0 dW_t^0$$

Trader *i* tries to minimize

$$J^{i}(\boldsymbol{\alpha}^{1},...,\boldsymbol{\alpha}^{N}) = \mathbb{E}\bigg[\int_{0}^{T} c_{X}(X_{t}^{i})dt + g(X_{T}^{i}) - V_{T}^{i}\bigg]$$

where V_t^i is the **wealth** of trader *i* at time *t*: $V_t^i = K_t^i + X_t^i S_t$.

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 > ◆○ ◆

MEAN FIELD GAME FORMULATION

Recall that
$$V_t^i = K_t^i + X_t^j S_t$$
. so that
 $dV_t^i = dK_t^i + X_t^i dS_t + S_t dX_t^i$
 $= \left[-c(\alpha_t^i) + X_t^i \frac{1}{N} \sum_{j=1}^N h(\alpha_t^j) \right] dt + \sigma S_t dW_t^i + \sigma_0 X_t^j dW_t^0.$ (1)

so that:

$$J^{i}(\boldsymbol{\alpha}^{1},\cdots,\boldsymbol{\alpha}^{N}) = \mathbb{E}\left[\int_{0}^{T}f(t,X_{t}^{i},\overline{\theta}_{t}^{N},\alpha_{t}^{i})dt + g(X_{T}^{i})\right],$$
(2)

where $\overline{\theta}_t^N$ is the empirical distribution of the *N* controls α_t^i and:

$$f(t, x, \theta, \alpha) = c(\alpha) + c_X(x) - x \langle h, \theta \rangle,$$
(3)

for $0 \leq t \leq T$, $x \in \mathbb{R}^d$, $\theta \in \mathcal{P}(A)$, and $\alpha \in A$.

MFG Formulation: For each deterministic flow $\theta = (\theta_t)_{t \ge 0}$ of probability measures on the space *A* of controls, solve the standard optimal control problem

$$\begin{cases} \inf_{\alpha} \mathbb{E} \left[\int_{0}^{T} f(t, X_{t}, \theta_{t}, \alpha_{t}) dt + g(X_{T}) \right] \\ dX_{t} = \alpha_{t} dt + \sigma dW_{t}, \quad t \in [0, T], \end{cases}$$
(4)

for a given Wiener process **W** and find a flow of measures $\boldsymbol{\theta} = (\theta_t)_{t \ge 0}$ so that $\theta_t = \mathcal{L}(\hat{\alpha}_t)$ where $\hat{\boldsymbol{\alpha}} = (\hat{\alpha}_t)_{0 \le t \le T}$ is an optimal control for the above problem.

N-PLAYER STOCHASTIC DIFFERENTIAL GAMES

Disclaimer

"Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely different." Johann Wolfgang von Goethe

Assume Mean Field Interactions (symmetric game)

$$dX_t^{N,i} = b(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N, \alpha_t^i) dt + \sigma(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N, \alpha_t^i) dW_t^i \quad i = 1, \cdots, N$$

Assume player *i* tries to minimize

$$J^{i}(\alpha^{1}, \cdots, \alpha^{N}) = \mathbb{E}\bigg[\int_{0}^{T} f(t, X_{t}^{N, i}, \overline{\mu}_{X_{t}^{N}}^{N}, \alpha_{t}^{i}) dt + g(X_{T}, \overline{\mu}_{X_{T}^{N}}^{N})\bigg]$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Search for Nash equilibria

- Very difficult in general, even if N is small
- ε-Nash equilibria? Still hard.
- How about in the limit $N \to \infty$?

Mean Field Games Lasry - Lions, Caines-Huang-Malhamé

N-PLAYER STOCHASTIC DIFFERENTIAL GAMES

Disclaimer

"Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely different." Johann Wolfgang von Goethe

Assume Mean Field Interactions (symmetric game)

$$dX_t^{N,i} = b(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N, \alpha_t^i) dt + \sigma(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N, \alpha_t^i) dW_t^i \quad i = 1, \cdots, N$$

Assume player *i* tries to minimize

$$J^{i}(\boldsymbol{\alpha}^{1},\cdots,\boldsymbol{\alpha}^{N}) = \mathbb{E}\bigg[\int_{0}^{T} f(t,X_{t}^{N,i},\overline{\mu}_{X_{t}^{N}}^{N},\alpha_{t}^{i})dt + g(X_{T},\overline{\mu}_{X_{T}^{N}}^{N})\bigg]$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Search for Nash equilibria

- Very difficult in general, even if N is small
- ϵ -Nash equilibria? Still hard.
- How about in the limit $N \to \infty$?

Mean Field Games Lasry - Lions, Caines-Huang-Malhamé

MFG PARADIGM

A **typical** agent plays against a **field** of players whose states he/she feels through the statistical distribution **distribution** μ_t of their states at time t

1. For each Fixed measure flow $\mu = (\mu_t)$ in $\mathcal{P}(\mathbb{R})$, solve the standard stochastic control problem

$$\hat{\boldsymbol{\alpha}} = \arg \inf_{\boldsymbol{\alpha} \in \mathbb{A}} \mathbb{E} \left\{ \int_0^T f(t, X_t, \mu_t, \alpha_t) dt + g(X_T, \mu_T) \right\}$$

subject to

$$dX_t = b(t, X_t, \mu_t, \alpha_t) dt + \sigma(t, X_t, \mu_t, \alpha_t) dW_t$$

2. Fixed Point Problem: determine $\mu = (\mu_t)$ so that

$$\forall t \in [0, T], \quad \mathcal{L}(X_t^{\hat{\alpha}}) = \mu_t.$$

 μ or $\hat{\alpha}$ is called a solution of the MFG.

Once this is done one expects that, if $\hat{\alpha}_t = \phi(t, X_t)$,

$$\alpha_t^{j*} = \phi^*(t, X_t^j), \qquad j = 1, \cdots, N$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

form an approximate Nash equilibrium for the game with N players.

EXTENDED MEAN FIELD GAMES

(I) For each fixed deterministic continuous flow $\nu = (\nu_t)_{0 \le t \le T}$ in $\mathcal{P}(\mathbb{R}^d \times A)$, solve the standard stochastic control problem:

$$\inf_{lpha\in\mathbb{A}}J^{
u}(lpha)$$

with

$$J^{\nu}(\alpha) = \mathbb{E}\left[\int_{0}^{T} f(t, X_{t}^{\alpha}, \nu_{t}, \alpha_{t}) dt + g(X_{T}^{\alpha}, \mu_{T})\right],$$

subject to

$$dX_t^{\alpha} = b(t, X_t^{\alpha}, \nu_t, \alpha_t)dt + \sigma(t, X_t^{\alpha}, \nu_t, \alpha_t)dW_t, \quad t \in [0, T],$$

and $X_0^{\alpha} = \xi$ where μ_s denotes the first marginal of ν_s

(II) Find a flow $\boldsymbol{\nu} = (\nu_t)_{0 \le t \le T}$ so that, for all $t \in [0, T]$,

$$\mathcal{L}(\hat{X}_t^{\boldsymbol{\nu}}, \hat{\alpha}_t^{\boldsymbol{\nu}}) = \nu_t$$

if $\hat{\alpha}^{\nu} \in \mathbb{A}$ is a minimizer of J^{ν} with $\hat{\mathbf{X}}^{\nu}$ as optimal path.

REVISITING THE ANALYTIC APPROACH

Assume σ is independent of the control, and use the reduced Hamiltonian

$$H(t, x, \nu, y, \alpha) = b(t, x, \nu, \alpha) \cdot y + f(t, x, \nu, \alpha)$$

for $t \in [0, T]$, $x, y \in \mathbb{R}^d$, $\alpha \in A$ and $\nu \in \mathcal{P}(\mathbb{R}^d \times A)$. Add some **convexity** assumption to find a unique minimizer

$$\hat{\alpha}(t, x, \nu, y) = \operatorname{argmin}_{\alpha \in A} H(t, x, \nu, y, \alpha)$$

HJB equation (recall, $\nu = (\nu_t)_{0 \le t \le T}$ is fixed)

$$\partial_t V(t,x) + \frac{1}{2} \operatorname{trace} \left[(\sigma \sigma^{\dagger})(t,x,\nu_t) \partial_{xx}^2 V(t,x) \right] \\ + H \left(t,x,\nu_t,\partial_x V(t,x), \hat{\alpha}(t,x,\nu_t,\partial_x V(t,x)) \right) = 0,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

in $[0, T] \times \mathbb{R}^d$, with $V(T, \cdot) = g(\cdot, \mu_T)$ as terminal condition.

USING THE HJB EQUATION

Optimal feedback

$$[0,T]\times\mathbb{R}^d\ni(t,x)\mapsto\hat{\alpha}(t,x,\nu_t,\partial_xV(t,x)),$$

Optimal control takes the Markovian form:

$$\hat{\alpha}_t^{\boldsymbol{\nu}} = \tilde{\alpha}(t, \hat{X}_t^{\boldsymbol{\nu}}, \nu_t), \quad t \in [0, T],$$

for the function $\tilde{\alpha}$

$$\tilde{\alpha}(t, x, \nu) = \hat{\alpha}(t, x, \nu, \partial_x V(t, x))$$

So

$$\mathcal{L}(\hat{X}_t^{\boldsymbol{\nu}}, \hat{\alpha}_t^{\boldsymbol{\nu}}) = \mathcal{L}(\hat{X}_t^{\boldsymbol{\nu}}) \circ (I_d, \hat{\alpha}(t, \cdot, \nu_t, \partial_X V(t, \cdot)))^{-1}.$$

and the equilibrium condition reads:

$$\nu_t = \mathcal{L}(\hat{X}_t^{\boldsymbol{\nu}}, \hat{\alpha}_t^{\boldsymbol{\nu}}) = \mathcal{L}(\hat{X}_t^{\boldsymbol{\nu}}) \circ (I_d, \hat{\alpha}(t, \cdot, \nu_t, \partial_x V(t, \cdot)))^{-1}, \quad t \in [0, T].$$

Finally, the fixed point condition for the flow $\nu = (\nu_t)_{0 \le t \le T}$ can be rewritten as:

$$\begin{cases} \mu_t = \mathcal{L}(\hat{X}_t^{\boldsymbol{\nu}}), \\ \nu_t = \mu_t \circ (I_d, \hat{\alpha}(t, \cdot, \nu_t, \partial_x V(t, \cdot)))^{-1}, \qquad t \in [0, T], \end{cases}$$
(5)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where μ_t is the first marginal of ν_t on \mathbb{R}^d .

IN SUMMARY

Forward-backward PDE system

$$\begin{cases} \partial_t V(t,x) + \frac{1}{2} \operatorname{trace} \left[(\sigma \sigma^{\dagger})(t,x,\nu_t) \partial_{xx}^2 V(t,x) \right] \\ + H \left(t,x,\nu_t, \partial_x V(t,x), \hat{\alpha}(t,x,\nu_t,\partial_x V(t,x)) \right) = 0, \\ \partial_t \mu_t - \frac{1}{2} \operatorname{trace} \left[\partial_{xx}^2 \left((\sigma \sigma^{\dagger})(t,x,\nu_t) \mu_t \right) \right] \\ + \operatorname{div}_x \left(b(t,x,\nu_t, \hat{\alpha}(t,x,\nu_t,\partial_x V(t,x))) \mu_t \right) = 0, \end{cases}$$

in $[0, T] \times \mathbb{R}^d$, with $V(T, \cdot) = g(\cdot, \mu_T)$ as terminal condition for the first equation, and $\mu_0 = \mathcal{L}(\xi)$ as initial condition for the second equation.

Compared to the classical case, the only novelty is the second part of the fixed point

$$\begin{cases} \mu_t = \mathcal{L}(\hat{X}_t^{\boldsymbol{\nu}}), \\ \nu_t = \mu_t \circ (I_d, \hat{\alpha}(t, \cdot, \nu_t, \partial_X V(t, \cdot)))^{-1}, \end{cases} \quad t \in [0, T], \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where μ_t is the first marginal of ν_t on \mathbb{R}^d .

WHEN ARE THESE IMPLICIT EXPRESSION UNIQUELY SOLVABLE?

Assume If,

$$\begin{split} &\int_{\mathbb{R}^d} \left(\left[f(t, x, \mu \circ (I_d, \psi(\cdot))^{-1}, \psi(x)) - f(t, x, \mu \circ (I_d, \psi'(\cdot))^{-1}, \psi(x)) \right] \right. \\ &\left. - \left[f(t, x, \mu \circ (I_d, \psi(\cdot))^{-1}, \psi'(x)) - f(t, x, \mu \circ (I_d, \psi'(\cdot))^{-1}, \psi'(x)) \right] \right) d\mu(x) \\ &\geq 0, \end{split}$$

for $t \in [0, T]$, $\mu \in \mathcal{P}_2(\mathbb{R}^d)$, and ψ and ψ' Borel-measurable from \mathbb{R}^d into A.

Then, t and μ being fixed, for any Borel-measurable function

$$\phi: \mathbb{R}^d \to \mathbb{R}^d$$
 in $L^2(\mathbb{R}^d, \mu; \mathbb{R}^d)$

there exists a unique square integrable function

$$\psi : \mathbb{R}^d \to A$$
, such that $\nu = \mu \circ (I_d, \psi)^{-1}$

satisfies

$$\nu = \mu \circ \left(I_d, \hat{\alpha}(t, \cdot, \nu, \phi(\cdot)) \right)^{-1}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

EXAMPLES

f is of the form

 $f(t, x, \nu, \alpha) = f_0(t, x, \nu) + f_1(t, x, \mu, \alpha),$

where μ denotes the first marginal of ν on \mathbb{R}^d , and smooth $f_0: [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d \times A) \to \mathbb{R}$ and $f_1: [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times A \to \mathbb{R}$

f is of the form:

$$f(t, x, \nu, \alpha) = h(t, x, \mu, \alpha, Q(x, \cdot)),$$

where $h: [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times A \times \mathcal{P}_2(A) \to \mathbb{R}$ isatisfies

$$|h(t, x, \mu, \alpha, \theta)| \leq C \big(1 + |x| + |\alpha| + M_2(\mu) + M_2(\theta)\big)^2,$$

together with the Lasry-Lions monotonicity condition:

$$\forall \theta, \theta' \in \mathcal{P}_2(\mathcal{A}), \quad \int_{\mathcal{A}} \left[h(t, x, \mu, \alpha, \theta) - h(t, x, \mu, \alpha, \theta') \right] d(\theta - \theta')(\alpha) \ge 0.$$

where μ is the first marginal of ν on \mathbb{R}^d , and $Q(x, d\alpha)$ is the regular conditional distribution of ν given that the first component

► $f: [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d \times A) \times A \to \mathbb{R}$ satisfying: $|f(t, x, \nu, \alpha)| \leq C(1 + |x| + |\alpha| + M_2(\nu))^2,$

together with the Lasry-Lions monotonicity condition on the whole $\mathbb{R}^d \times A$, namely:

$$\forall \nu, \nu' \in \mathcal{P}_2(\mathbb{R}^d \times A), \quad \int_{\mathbb{R}^d \times A} \left[f(t, x, \nu, \alpha) - f(t, x, \nu', \alpha) \right] d(\nu - \nu')(x, \alpha) \ge 0.$$

(日) (日) (日) (日) (日) (日) (日)

TECHNICAL RESULTS

Probabilistic Approach

Using either

BSDE Representation of the Value Function

or

Stochastic Pontryagin Maximum Principle

together with

our monotonicity condition

EXISTENCE

R.C. - Delarue Chap. 4, Vol. I of big book

If Lasry-Lions monotonicity condition

UNIQUENESS

▲□▶▲□▶▲□▶▲□▶ □ のQ@

TECHNICAL RESULTS

Probabilistic Approach

Using either

BSDE Representation of the Value Function

or

Stochastic Pontryagin Maximum Principle

together with

our monotonicity condition

EXISTENCE

R.C. - Delarue Chap. 4, Vol. I of big book

If Lasry-Lions monotonicity condition

UNIQUENESS

▲□▶▲□▶▲□▶▲□▶ □ のQ@

BACK TO THE PREVIOUS PRICE IMPACT MODEL

In this particular case:

Reduced Hamiltonian

$$H(t, x, \nu, \alpha, y) = \alpha y + c(\alpha) + c_X(x) - x < h, \theta >$$

so that if we assume $\alpha \mapsto c(\alpha)$ is convex:

$$\hat{\alpha}(t, x, \nu, y) = [c']^{-1}(y)$$

and

$$\tilde{\alpha}(t, x, \nu) = [c']^{-1}(\partial_x V(t, x))$$

Particular Case:

$$c(\alpha) = \frac{c_{\alpha}}{2}\alpha^2$$
, $c_X(\alpha) = \frac{c_X}{2}x^2$, $h(\alpha) = \overline{h}\alpha$, $g(x) = \frac{c_g}{2}x^2$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Linear Quadratic MFG, explicit solution !

Extended by Jaimungal-Nourian and Cardaliaguet-Lehalle

RATE OF TRADING IN EQUILIBRIUM

Time evolution (from *t* ranging from 0.06 to T = 1) of the marginal density of the optimal rate of trading $\hat{\alpha}_t$ for a representative trader.

TERMINAL INVENTORY OF A TYPICAL TRADER

FIGURE: Expected terminal inventory as a function of *m* and c_X (left), and as a function of *m* and \overline{h} (right).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

TERMINAL INVENTORY OF A TYPICAL TRADER

FIGURE: Expected terminal inventory as a function of c_{α} and \overline{h} (left), and as a function of c_{χ} and \overline{h} (right).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

CONTROL OF MCKEAN - VLASOV DYNAMICS

Confusingly similar problem !

Solve the non-standard stochastic control problem

$$\hat{\boldsymbol{\alpha}} = \arg \inf_{\boldsymbol{\alpha} \in \mathbb{A}} \mathbb{E} \left\{ \int_0^T f(t, X_t, \nu_t, \alpha_t) dt + g(X_T, \mu_T) \right\}$$

subject to

 $dX_t = b(t, X_t, \nu_t, \alpha_t) dt + \sigma(t, X_t, \nu_t, \alpha_t) dW_t$

where the measure flow $\nu = (\nu_t)_t$ in $\mathcal{P}(\mathbb{R}^d \times A)$ is actually given by:

$$\forall t \in [0, T], \quad \nu_t = \mathcal{L}(X_t, \alpha_t) \quad \text{and} \quad \mu_t = \mathcal{L}(X_t).$$

First studied and solved by R.C - Delarue when:

$$\forall t \in [0, T], \quad \nu_t = \mu_t = \mathcal{L}(X_t)$$

Currently, analyzed by R.C. - Acciaio when:

$$\forall t \in [0, T], \quad \nu_t = \mathcal{L}(X_t, \alpha_t) \quad \text{and} \quad \mu_t = \mathcal{L}(X_t).$$

Equivalent to a **causal optimal transport** in path-space from the Wiener measure to the law of a diffusion, but **NB: Pham-Wei**

CONTROL OF MCKEAN - VLASOV DYNAMICS

Confusingly similar problem !

Solve the non-standard stochastic control problem

$$\hat{\boldsymbol{\alpha}} = \arg \inf_{\boldsymbol{\alpha} \in \mathbb{A}} \mathbb{E} \left\{ \int_0^T f(t, X_t, \nu_t, \alpha_t) dt + g(X_T, \mu_T) \right\}$$

subject to

$$dX_t = b(t, X_t, \nu_t, \alpha_t) dt + \sigma(t, X_t, \nu_t, \alpha_t) dW_t$$

where the measure flow $\nu = (\nu_t)_t$ in $\mathcal{P}(\mathbb{R}^d \times A)$ is actually given by:

$$\forall t \in [0, T], \quad \nu_t = \mathcal{L}(X_t, \alpha_t) \quad \text{and} \quad \mu_t = \mathcal{L}(X_t).$$

First studied and solved by R.C - Delarue when:

$$\forall t \in [0, T], \quad \nu_t = \mu_t = \mathcal{L}(X_t)$$

Currently, analyzed by R.C. - Acciaio when:

$$\forall t \in [0, T], \quad \nu_t = \mathcal{L}(X_t, \alpha_t) \quad \text{and} \quad \mu_t = \mathcal{L}(X_t).$$

Equivalent to a **causal optimal transport** in path-space from the Wiener measure to the law of a diffusion, but **NB: Pham-Wei**

CONTROL OF MCKEAN - VLASOV DYNAMICS

Confusingly similar problem !

Solve the non-standard stochastic control problem

$$\hat{\boldsymbol{\alpha}} = \arg \inf_{\boldsymbol{\alpha} \in \mathbb{A}} \mathbb{E} \left\{ \int_0^T f(t, X_t, \nu_t, \alpha_t) dt + g(X_T, \mu_T) \right\}$$

subject to

$$dX_t = b(t, X_t, \nu_t, \alpha_t) dt + \sigma(t, X_t, \nu_t, \alpha_t) dW_t$$

where the measure flow $\nu = (\nu_t)_t$ in $\mathcal{P}(\mathbb{R}^d \times A)$ is actually given by:

$$\forall t \in [0, T], \quad \nu_t = \mathcal{L}(X_t, \alpha_t) \quad \text{and} \quad \mu_t = \mathcal{L}(X_t).$$

First studied and solved by R.C - Delarue when:

$$\forall t \in [0, T], \quad \nu_t = \mu_t = \mathcal{L}(X_t)$$

Currently, analyzed by R.C. - Acciaio when:

$$\forall t \in [0, T], \quad \nu_t = \mathcal{L}(X_t, \alpha_t) \quad \text{and} \quad \mu_t = \mathcal{L}(X_t).$$

Equivalent to a **causal optimal transport** in path-space from the Wiener measure to the law of a diffusion, but **NB: Pham-Wei**

CONGESTION IN CROWD MOTION

Trying to understand the effects of crowded trades?

Look at this model of congestion !

Lasry-Lions-Achdou-

- ▶ bounded domain D in \mathbb{R}^d
- exit only possible through $\Gamma \subset \partial D$

$$dX_t^i = \alpha_t^i dt + dW_t^i + dK_t^i, \quad t \in [0, T], \ X_0^i = x_0^i \in D$$

- reflecting boundary conditions on $\partial D \setminus \Gamma$
- Dirichlet boundary condition on Γ

$$J^{i}(\boldsymbol{\alpha}^{1},\cdots,\boldsymbol{\alpha}^{N}) = \mathbb{E}\left[\int_{0}^{T\wedge\tau^{i}} \left(\frac{1}{2}\ell(X_{t}^{i},\mu_{t}^{N})|\alpha_{t}|^{2} + f(t)\right)dt\right]$$

- f penalizes the time spent in D before the exit
- $\ell(x,\mu)$ models congestion around x if μ is the distribution of the individuals (e.g. $\ell(x,\mu) = m(x)^{\alpha}$)

CONGESTION & EXIT OF A ROOM

FIGURE: Left: Initial distribution m_0 . Right: Time evolution of the total mass of the distribution m_t of the individuals still in the room at time *t* without congestion (continuous line) and with moderate congestion (dotted line).

ROOM EXIT DENSITIES

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

ROOM EXIT DENSITIES

m_t

3

- 1 - 0

- 2 ³

 10

- 5

- 0

CHALLENGE

Putting together

Extended Mean Field Game Models

(natural for modeling large groups of traders)

Congestion MFG Models

(with local interactions involving the value of the density at points)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

CHALLENGE

Putting together

Extended Mean Field Game Models

(natural for modeling large groups of traders)

Congestion MFG Models

(with local interactions involving the value of the density at points)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>