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GAME THEORY

Long History (e.g. long list of Nobel Prizes in Economics)

Of relevance to this presentation:

Mathematical Theory
I Notion of Equilibrium & Nash Equilibrium

Applications in Finance / Finance Engineering
I Auction Theory (IPOs, pricing of digital goods, .... )
I Predatory Trading
I Optimal Execution / Liquidation

Applications from Social Sciences & Regulation
I Large populations behavior (herding, congestion, .... )
I Games of Timing (Bank runs, Fund Redemption, .... )

Will Focus on Mean Field Games

Lasry-Lions, Caines-Huang-Malhamé, 2006



AGENT BASED MODELS AND MEAN FIELD GAMES

I Agent Based Models
I Very popular for the analysis of large complex systems
I Behavior prescribed at the individual (microscopic) level
I Exogenously specified interactions
I Large scale simulations possible

I If symmetries in the system, interactions can be Mean Field
I Possible averaging effects for large populations
I Mean Field limits easier to simulate and study
I Net result: Macroscopic behavior of the system



MEAN FIELD GAMES VS AGENT BASED MODELS

I Mean Field Games

I At the (microscopic) level individuals control their states
I Exogenously specified interaction rules
I Individuals are rational: they OPTIMIZE !!!!

I Search for equilibria: very difficult, NP hard in general

I If symmetries in the system, interactions can be Mean Field

I Possible averaging effects for large populations
I Mean Field limits easier to study
I Macroscopic behavior of the system thru solutions of

Mean Field Games

Lasry-Lions (MFG) Caines-Huang-Malhamé (NCE)
I Examples: flocking, schooling, herding, crowd behavior, percolation of

information, price formation, hacker behavior and cyber security, ......



TWO SIMPLE EXAMPLES

I Markets for Exhaustible Resources (e.g. crude oil)
Guéant - Lasry - Lions and Chan-Sircar

I Price Impact of a Large Group of Traders
R.C. - Lacker (weak formulation) R.C. - Aghbad (unpublished) R.C. -
Delarue (Vol. I of big book), later extended in Jaimungal - Nourian &
Cardaliaguet - L Halle



PRICE IMPACT OF A GROUP OF N TRADERS

X i
t number of shares owned at time t , αi

t rate of trading of i-th trader

dX i
t = αi

t dt + σi dW i
t

K i
t amount of cash held by trader i at time t

dK i
t = −[αi

t St + c(αi
t )] dt ,

where St price of one share, α→ c(α) ≥ 0 cost for trading at rate α

Price impact formula:

dSt =
1
N

N∑
i=1

h(αi
t ) dt + σ0dW 0

t

Trader i tries to minimize

J i (α1, ...,αN ) = E
[ ∫ T

0
cX (X i

t )dt + g(X i
T )− V i

T

]
where V i

t is the wealth of trader i at time t : V i
t = K i

t + X i
t St .



MEAN FIELD GAME FORMULATION

Recall that V i
t = K i

t + X i
t St . so that

dV i
t = dK i

t + X i
t dSt + St dX i

t

=

[
− c(αi

t ) + X i
t

1
N

N∑
j=1

h(αj
t )

]
dt + σSt dW i

t + σ0X i
t dW 0

t . (1)

so that:

J i (α1
, · · · ,αN ) = E

[ ∫ T

0
f (t,X i

t , θ
N
t , α

i
t )dt + g(X i

T )

]
, (2)

where θN
t is the empirical distribution of the N controls αi

t and:

f (t, x, θ, α) = c(α) + cX (x)− x〈h, θ〉, (3)

for 0 ≤ t ≤ T , x ∈ Rd , θ ∈ P(A), and α ∈ A.

MFG Formulation: For each deterministic flow θ = (θt )t≥0 of probability measures on the space
A of controls, solve the standard optimal control probleminf

α
E
[ ∫ T

0
f (t,Xt , θt , αt )dt + g(XT )

]
dXt = αt dt + σdWt , t ∈ [0, T ],

(4)

for a given Wiener process W and find a flow of measures θ = (θt )t≥0 so that θt = L(α̂t ) where

α̂ = (α̂t )0≤t≤T is an optimal control for the above problem.



N -PLAYER STOCHASTIC DIFFERENTIAL GAMES

Disclaimer
”Mathematicians are like Frenchmen: whatever you say to them they
translate into their own language and forthwith it is something entirely
different.”

Johann Wolfgang von Goethe

Assume Mean Field Interactions (symmetric game)

dX N,i
t = b(t ,X N,i

t , µN
XN

t
, αi

t )dt + σ(t ,X N,i
t , µN

XN
t
, αi

t )dW i
t i = 1, · · · ,N

Assume player i tries to minimize

J i (α1, · · · ,αN ) = E
[ ∫ T

0
f (t ,X N,i

t , µN
XN

t
, αi

t )dt + g(XT , µ
N
XN

T
)

]
Search for Nash equilibria

I Very difficult in general, even if N is small
I ε-Nash equilibria? Still hard.
I How about in the limit N →∞?

Mean Field Games Lasry - Lions, Caines-Huang-Malhamé
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MFG PARADIGM

A typical agent plays against a field of players whose states he/she feels through the statistical
distribution distribution µt of their states at time t

1. For each Fixed measure flow µ = (µt ) in P(R), solve the standard stochastic control
problem

α̂ = arg inf
α∈A

E
{∫ T

0
f (t,Xt , µt , αt )dt + g(XT , µT )

}
subject to

dXt = b(t ,Xt , µt , αt )dt + σ(t ,Xt , µt , αt )dWt

2. Fixed Point Problem: determine µ = (µt ) so that

∀t ∈ [0, T ], L(X α̂
t ) = µt .

µ or α̂ is called a solution of the MFG.

Once this is done one expects that, if α̂t = φ(t,Xt ),

α
j∗
t = φ

∗(t,X j
t ), j = 1, · · · ,N

form an approximate Nash equilibrium for the game with N players.



EXTENDED MEAN FIELD GAMES

(I) For each fixed deterministic continuous flow ν = (νt)0≤t≤T in
P(Rd × A), solve the standard stochastic control problem:

inf
α∈A

Jν(α),

with

Jν(α) = E
[∫ T

0
f (t ,Xα

t , νt , αt)dt + g(Xα
T , µT )

]
,

subject to

dXα
t = b(t ,Xα

t , νt , αt)dt + σ(t ,Xα
t , νt , αt)dWt , t ∈ [0,T ],

and Xα
0 = ξ where µs denotes the first marginal of νs

(II) Find a flow ν = (νt)0≤t≤T so that, for all t ∈ [0,T ],

L(X̂ν
t , α̂

ν
t ) = νt

if α̂ν ∈ A is a minimizer of Jν with X̂ν as optimal path.



REVISITING THE ANALYTIC APPROACH

Assume σ is independent of the control, and use the reduced Hamiltonian

H(t , x , ν, y , α) = b(t , x , ν, α) · y + f (t , x , ν, α),

for t ∈ [0,T ], x , y ∈ Rd , α ∈ A and ν ∈ P(Rd × A).
Add some convexity assumption to find a unique minimizer

α̂(t , x , ν, y) = argminα∈AH(t , x , ν, y , α)

HJB equation (recall, ν = (νt)0≤t≤T is fixed)

∂tV (t , x) +
1
2

trace
[(
σσ†

)
(t , x , νt)∂

2
xx V (t , x)

]
+ H

(
t , x , νt , ∂x V (t , x), α̂

(
t , x , νt , ∂x V (t , x)

))
= 0,

in [0,T ]× Rd , with V (T , ·) = g(·, µT ) as terminal condition.



USING THE HJB EQUATION

Optimal feedback

[0,T ]× Rd 3 (t , x) 7→ α̂
(
t , x , νt , ∂x V (t , x)

)
,

Optimal control takes the Markovian form:

α̂ν
t = α̃

(
t , X̂ν

t , νt
)
, t ∈ [0,T ],

for the function α̃
α̃(t , x , ν) = α̂(t , x , ν, ∂x V (t , x))

So
L
(
X̂ν

t , α̂
ν
t
)

= L
(
X̂ν

t
)
◦
(
Id , α̂(t , ·, νt , ∂x V (t , ·))

)−1
.

and the equilibrium condition reads:

νt = L
(
X̂ν

t , α̂
ν
t
)

= L
(
X̂ν

t
)
◦
(
Id , α̂(t , ·, νt , ∂x V (t , ·))

)−1
, t ∈ [0,T ].

Finally, the fixed point condition for the flow ν = (νt )0≤t≤T can be rewritten as:{
µt = L

(
X̂ν

t
)
,

νt = µt ◦
(
Id , α̂(t , ·, νt , ∂x V (t , ·))

)−1
,

t ∈ [0,T ], (5)

where µt is the first marginal of νt on Rd .



IN SUMMARY

Forward-backward PDE system

∂t V (t , x) +
1
2

trace
[(
σσ†

)
(t , x , νt )∂

2
xx V (t , x)

]
+H
(

t , x , νt , ∂x V (t , x), α̂(t , x , νt , ∂x V (t , x))
)

= 0,

∂tµt −
1
2

trace
[
∂2

xx

((
σσ†

)
(t , x , νt )µt

)]
+divx

(
b
(
t , x , νt , α̂(t , x , νt , ∂x V (t , x))

)
µt

)
= 0,

in [0,T ]× Rd , with V (T , ·) = g(·, µT ) as terminal condition for the first equation, and
µ0 = L(ξ) as initial condition for the second equation.

Compared to the classical case, the only novelty is the second part of the fixed point{
µt = L

(
X̂ν

t
)
,

νt = µt ◦
(
Id , α̂(t , ·, νt , ∂x V (t , ·))

)−1
,

t ∈ [0,T ],

where µt is the first marginal of νt on Rd .



WHEN ARE THESE IMPLICIT EXPRESSION UNIQUELY SOLVABLE?

Assume If,∫
Rd

([
f
(
t , x , µ ◦ (Id , ψ(·))−1, ψ(x)

)
− f
(
t , x , µ ◦ (Id , ψ′(·))−1, ψ(x)

)]
−
[
f
(
t , x , µ ◦ (Id , ψ(·))−1, ψ′(x)

)
− f
(
t , x , µ ◦ (Id , ψ′(·))−1, ψ′(x)

)])
dµ(x)

≥ 0,

for t ∈ [0,T ], µ ∈ P2(Rd ), and ψ and ψ′ Borel-measurable from Rd into A.

Then, t and µ being fixed, for any Borel-measurable function

φ : Rd → Rd in L2(Rd , µ;Rd )

there exists a unique square integrable function

ψ : Rd → A, such that ν = µ ◦ (Id , ψ)−1

satisfies
ν = µ ◦

(
Id , α̂

(
t , ·, ν, φ(·)

))−1



EXAMPLES

I f is of the form
f (t, x, ν, α) = f0(t, x, ν) + f1(t, x, µ, α),

where µ denotes the first marginal of ν on Rd , and smooth
f0 : [0, T ]× Rd × P2(Rd × A)→ R and f1 : [0, T ]× Rd × P2(Rd )× A→ R

I f is of the form:
f (t, x, ν, α) = h

(
t, x, µ, α,Q(x, ·)

)
,

where h : [0, T ]× Rd × P2(Rd )× A× P2(A)→ R isatisfies

|h(t, x, µ, α, θ)| ≤ C
(
1 + |x| + |α| + M2(µ) + M2(θ)

)2
,

together with the Lasry-Lions monotonicity condition:

∀θ, θ′ ∈ P2(A),

∫
A

[
h(t, x, µ, α, θ)− h(t, x, µ, α, θ′)

]
d
(
θ − θ′

)
(α) ≥ 0.

where µ is the first marginal of ν on Rd , and Q(x, dα) is the regular conditional distribution of
ν given that the first component

I f : [0, T ]× Rd × P2(Rd × A)× A→ R satisfying:

|f (t, x, ν, α)| ≤ C
(
1 + |x| + |α| + M2(ν)

)2
,

together with the Lasry-Lions monotonicity condition on the whole Rd × A, namely:

∀ν, ν′ ∈ P2(Rd × A),

∫
Rd×A

[
f (t, x, ν, α)− f (t, x, ν′, α)

]
d
(
ν − ν′

)
(x, α) ≥ 0.



TECHNICAL RESULTS

Probabilistic Approach

Using either
I BSDE Representation of the Value Function

or
I Stochastic Pontryagin Maximum Principle

together with
I our monotonicity condition

EXISTENCE

R.C. - Delarue Chap. 4, Vol. I of big book

If Lasry-Lions monotonicity condition

UNIQUENESS
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BACK TO THE PREVIOUS PRICE IMPACT MODEL

In this particular case:

Reduced Hamiltonian

H(t , x , ν, α, y) = αy + c(α) + cX (x)− x < h, θ >

so that if we assume α 7→ c(α) is convex:

α̂(t , x , ν, y) = [c′]−1(y)

and
α̃(t , x , ν) = [c′]−1(∂x V (t , x))

Particular Case:

c(α) =
cα
2
α2, cX (α) =

cx

2
x2, h(α) = hα, g(x) =

cg

2
x2

Linear Quadratic MFG, explicit solution !

Extended by Jaimungal-Nourian and Cardaliaguet-Lehalle



RATE OF TRADING IN EQUILIBRIUM
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Time evolution (from t ranging from 0.06 to T = 1) of the marginal density of the
optimal rate of trading α̂t for a representative trader.



TERMINAL INVENTORY OF A TYPICAL TRADER
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FIGURE: Expected terminal inventory as a function of m and cX (left) , and as a function
of m and h (right).



TERMINAL INVENTORY OF A TYPICAL TRADER
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CONTROL OF MCKEAN - VLASOV DYNAMICS

Confusingly similar problem !

Solve the non-standard stochastic control problem

α̂ = arg inf
α∈A

E

{∫ T

0
f (t ,Xt , νt , αt )dt + g(XT , µT )

}
subject to

dXt = b(t ,Xt , νt , αt )dt + σ(t ,Xt , νt , αt )dWt

where the measure flow ν = (νt )t in P(Rd × A) is actually given by:

∀t ∈ [0,T ], νt = L(Xt , αt ) and µt = L(Xt ).

First studied and solved by R.C - Delarue when:

∀t ∈ [0,T ], νt = µt = L(Xt )

Currently, analyzed by R.C. - Acciaio when:

∀t ∈ [0,T ], νt = L(Xt , αt ) and µt = L(Xt ).

Equivalent to a causal optimal transport in path-space from the Wiener measure to
the law of a diffusion, but ...... NB: Pham-Wei
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CONGESTION IN CROWD MOTION

Trying to understand the effects of crowded trades?

Look at this model of congestion !

Lasry-Lions-Achdou- ....
I bounded domain D in Rd

I exit only possible through Γ ⊂ ∂D

dX i
t = αi

t dt + dW i
t + dK i

t , t ∈ [0,T ], X i
0 = x i

0 ∈ D

I reflecting boundary conditions on ∂D \ Γ

I Dirichlet boundary condition on Γ

J i (α1, · · · ,αN ) = E
[∫ T∧τ i

0

(1
2
`(X i

t , µ
N
t )|αt |2 + f (t)

)
dt
]

I f penalizes the time spent in D before the exit
I `(x , µ) models congestion around x if µ is the distribution of the individuals (e.g.
`(x , µ) = m(x)α)



CONGESTION & EXIT OF A ROOM
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FIGURE: Left: Initial distribution m0. Right: Time evolution of the total mass of the
distribution mt of the individuals still in the room at time t without congestion
(continuous line) and with moderate congestion (dotted line).



ROOM EXIT DENSITIES
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ROOM EXIT DENSITIES
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CHALLENGE

Putting together

I Extended Mean Field Game Models
(natural for modeling large groups of traders)

I Congestion MFG Models
(with local interactions involving the value of the density at points)
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